استناده از مصوب حساب ساده مجاز است

1- دریک نمونه تصادفی ۱۰۰۰ هزارنفری از افراد یک جامعه تعداد بی سوادان ۱۰۰ نفر مشاهده شده حذف از بی سوادان با ۹۵/این طمینان کدام است؟

\[t = \frac{x - \mu}{s} \]

\[t = \frac{120 - 0}{10} = 12 \]

\[t = \frac{120 - 0}{10} = 12 \]

2- برای برآوردیک جامعه یک نمونه ۱۰۰ نفر آن جامعه انتخاب کرده ایم انحراف معیارین نمونه برپارابای ۵/است اگر باشد حداکثر خطای برای در سطح ۱/۰ چقدر است؟

\[\alpha = 0.01 \]

3- زمان لازم برای انجام کار مونتاژ در یک واحد صنعتی دارای توزیع نرمال با پارامترات ۲/۵۷۳ است از نمونه جامعه نمونه ای به حجم ۱۰۰ انتخاب و نتایج اندازه گیری به صورت ۱/۰۸۸۴۸۲۳ دست آمده است به آمار فصله ای برای میانگین جامعه با حتمال ۹۵/۰ کدام است؟

\[\mu = \frac{x}{n} \]

4- درنمونه ای به حجم ۱۵ از اجسام ای نرمال با انحراف معیار مقدار میانگین و واریانس نمونه به ترتیب ۶/۷۰ و ۱۰/۰۰ به دست اگر میانگین جامعه در فرض صفر برپارابا داشت آزمون آزمون کدام است؟

\[\chi^2 = \frac{(x - \mu)^2}{\sigma^2} \]

5- متغیر تصادفی دارای توزیع نرمال با پارامترات ۵/۰۶۲ یک پیشنهاد برای برآورد میانگین جامعه نمونه ای به اندازه ۶۴ انتخاب شده اگر میانگین نمونه ۲۰/۱۹۸ باشد حداکثر خطای برآورد بالاترین ۹۵/۰ کدام است؟

\[\chi^2 = \frac{(x - \mu)^2}{\sigma^2} \]

6- درنمونه ۲۰۰ از اکثریت انحراف معیار نمونه برپارابای ۵/۰۰۰ دست آمده است به آمار فصله ای انحراف معیار جامعه با حتمای ۹۵ کدام است؟

\[\chi^2 = \frac{(x - \mu)^2}{\sigma^2} \]

7- درنمونه ۲۰۰ اکثریت انحراف معیار نمونه برپارابای ۵/۰۰۰ دست آمده است به آمار فصله ای انحراف معیار جامعه با حتمای ۹۵ کدام است؟

\[\chi^2 = \frac{(x - \mu)^2}{\sigma^2} \]

8- درنمونه ۹۰۰ اکثریت انحراف معیار نمونه برپارابای ۵/۰۰۰ دست آمده است به آمار فصله ای انحراف معیار جامعه با حتمای ۹۵ کدام است؟

\[\chi^2 = \frac{(x - \mu)^2}{\sigma^2} \]

\[\chi^2 = \frac{(x - \mu)^2}{\sigma^2} \]

\[\chi^2 = \frac{(x - \mu)^2}{\sigma^2} \]

\[\chi^2 = \frac{(x - \mu)^2}{\sigma^2} \]
کارشناسی
نیم‌سال اول ۱۳۹۴-۱۳۹۵

سوال ۱: ۱، ۱۲، ۷ سال آزمون (دیقه)؛ نشان: ۱۳۰، نشته:.

۹- فرض کنید مقدار $\overline{X} = 2, S = 0.8$ به عنوان میانگین و اکراکس داده‌های ترتیبی 2.210422 اگر دریک نمونه ۶ نتایی مقدار $4 = \overline{X}$ به سیستم به درستی باشد، در نتیجه مقدار آماره آزمون کدام است؟

۱۰- در یک آزمون به منظور مقایسه دو گروه داریم $10 = \overline{X}$ در سرویس که $S_2 = 16, \overline{X_2} = 9, n_2 = 20, S_1 = 15, \overline{X_1} = 5, n_1 = 10$، $P(t > 1.96) = 0.025$ کدام گزاره زیردرست است؟

۱۱- کدام گزاره در مورد منحنی که واقعاً مقصرنیویده ولی در دردگاه مجرم شناخته شده است، درست است؟

۱۲- در آزمون با اطلاعات $H_0 : \mu = 5, H_1 : \mu > 5$ رادیافیل است؟ عدد جدول $Z = 2.58$ و گزاره $\overline{X} = 7, S = 100, n = 11$، $H_0 : P \geq 0.6, H_1 : P > 0.6$ اگر میانگین برای آزمون به کار می‌رود؟

۱۳- فرض کنید ادعاکرده است که کمتر از 0.05 تولیدات او دست کم 20% عمر میکند فرضیه صفر برای آزمون این ادعای کدام است؟

۱۴- اگر میانگین یک نمونه ۱۰۰ تا یک جامعه برابر با ۲۵۰ و انحراف معیار آن کم‌تر از میانگین نمونه ۲۰۰ تا یک اجسام به دیگر مسایل 25% انحراف معیار 10% این آماره، مقدار آماره آزمون برای فرض برای میانگین به دو چونکه کدام است؟

۱۵- برای آزمون $\overline{X} = 7$ درمقابل 7 کدام آماره آزمون به کار می‌رود؟

۱۶- درکارکرانه ای که دوخط تولید مستقل دارند نمونه های با مشخصات زیر به دست آمده است.

<table>
<thead>
<tr>
<th>n_1</th>
<th>n_2</th>
<th>S_1^2</th>
<th>S_2^2</th>
<th>\overline{X}_1</th>
<th>\overline{X}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>200</td>
<td>25</td>
<td>25</td>
<td>198</td>
<td>200</td>
</tr>
</tbody>
</table>

$S_p^2 = \frac{(n-1)s^2}{7}$

$S_p^2 = \frac{nS^2}{7}$
سوال 17- برای مقایسه میانگین های سه جامعه نرمال با واریانس مشترک، نمونه‌های یک‌محوره مستقل به اندازه ۵ در هر جامعه استخراج کرده ایم اگر جدول آنالیز واریانس این آزمون به صورت زیر باشد مقدار فکرد

\[n_1 = n_2 = n_3 = 5 \]

است؟

\[
\begin{array}{|c|c|c|c|}
\hline
\text{منبع تغییرات} & \text{SS} & \text{df} & \text{MS} & \text{F} \\
\hline
\text{بين گروه ها} & & & & \\
\hline
\text{درون گروه ها} & 861.44 & & & \\
\hline
\text{كل} & 95.46 & & & \\
\hline
\end{array}
\]

\[0.05 \leq P \leq 0.01 \]

سوال 18- برای مقایسه میانگین های سه جامعه نرمال با واریانس مشترک، نمونه‌های یک‌محوره مستقل به اندازه ۵ در هر جامعه استخراج کرده ایم اگر جدول آنالیز واریانس این آزمون به صورت زیر باشد مقدار فکرد

\[n_1 = n_2 = n_3 = 5 \]

است؟

\[
\begin{array}{|c|c|c|c|}
\hline
\text{منبع تغییرات} & \text{SS} & \text{df} & \text{MS} & \text{F} \\
\hline
\text{بين گروه ها} & & & & \\
\hline
\text{درون گروه ها} & 861.44 & & & \\
\hline
\text{كل} & 95.46 & & & \\
\hline
\end{array}
\]

\[0.01 \leq P \leq 0.05 \]

سوال 19- برای مقایسه میانگین های سه جامعه نرمال با واریانس مشترک، نمونه‌های یک‌محوره مستقل به اندازه ۵ در هر جامعه استخراج کرده ایم اگر جدول آنالیز واریانس این آزمون به صورت زیر باشد مقدار آزمون چقدر است؟

\[
\begin{array}{|c|c|c|c|}
\hline
\text{منبع تغییرات} & \text{SS} & \text{df} & \text{MS} & \text{F} \\
\hline
\text{بين گروه ها} & & & & \\
\hline
\text{درون گروه ها} & 861.44 & & & \\
\hline
\text{كل} & 95.46 & & & \\
\hline
\end{array}
\]

\[0.001 \leq P \leq 0.01 \]
زمان آزمون (۱۳۹۲): ترم: ۱۳۹۲، تاریخ: ۱۳۹۳-۹۴

سوال ۱۰- برای ازامون برای ۱۰۰ میانگین نمرات درسه کلاس نمونه ای ۹۰۰ نمونه ای تاپی از هر کلاس اطلاعات زیر به دست آمده است از آمار آزمون

\[S_1^2 = 4, S_2^2 = 6, S_3^2 = 5, \bar{X}_1 = 15, \bar{X}_2 = 16, \bar{X}_3 = 14 \]

چقدر است؟

\[S_1^2 = 4, S_2^2 = 6, S_3^2 = 5, \bar{X}_1 = 15, \bar{X}_2 = 16, \bar{X}_3 = 14 \]

سوال ۲۱- برای ازامون برای ۱۰۰ میانگین نمرات درسه کلاس نمونه ای ۹۰۰ نمونه ای تاپی از هر کلاس اطلاعات زیر به دست آمده است از آمار آزمون

\[S_1^2 = 4, S_2^2 = 6, S_3^2 = 5, \bar{X}_1 = 15, \bar{X}_2 = 16, \bar{X}_3 = 14 \]

سوال ۲۲- به منظور مقایسه هزینه مسکن خانوارها در ۲ منطقه، از هریک ۳۰ آرا از این مناطق نمونه ای به اندازه ۶ خانوار به طور تصادفی انتخاب شده و بررسی مشاهدات به دست آمده است از آمار آزمون کدام است؟

\[SSR = 6.4, SST = 68.9 \]

سوال ۲۳- وزن جعبه مشابه از یک ماده غذایی به ترتیب ۲۹.۴،۷۴.۹،۲.۹.۴،۸.۱،۰.۲،۱.۰،۸.۱،۴.۲،۹.۱ کیلوگرم است باید ضریب اینکه وزن این جعبه ها از توزیع نرمال پیروی کندیک فاصله اطمینان ۹۵٪ برای میانگین جامعه کدام است؟

\[8.23 \times 10.3 \]

سوال ۲۴- در معادله رگرسیون \(Y = 2X + b \) اگر \(\bar{X} = 3, \bar{Y} = 5 \) باشد مقدار \(b \) کدام است؟

\[X: 2 4 6 8, Y: 3 5 6 7 9 \]

۵. \[X: 2 4 6 8, Y: 3 5 6 7 9 \]

سوال ۲۵- اگر معادله خط رگرسیون \(Y = aX + b \) برای جدول زیر مقدار \(a \) کدام است؟

\[875.6, 2.5, 0.85 \]

سوال ۲۶- اگر معادله خط رگرسیون \(Y = aX + b \) برای جدول زیر مقدار \(a \) کدام است؟

\[875.6, 2.5, 0.85 \]

تعداد سوالات: ترم: ۹۲، تاریخ: ۱۳۹۲-۹۴
مقدمه ضریب همبستگی 1- آن است که بین دومتغییر همبستگی:

1. وجود ندارد.
2. کامل و هم جهت وجود دارد.
3. کامل و غیرهم جهت وجود دارد.

در معادله

\[n = 10, \sum XY = 15, \sum X^2 = 140, \sum Y^2 = 35, \sum X = 20, \sum Y = 10 \]

گرگسیون ب، کدام است؟

\[Y = ax + b \]

در معادله

\[n = 10, \sum XY = 15, \sum X^2 = 140, \sum Y^2 = 35, \sum X = 20, \sum Y = 10 \]

گرگسیون ب، کدام است؟

\[Y = ax + b \]

ضریب همبستگی بین X و Y کدام است؟

\[\alpha = 0.05 \]

برای باشکده کدام گزنی بهترین است؟

\[H_0 : \beta = 0 \]

1. اطلاعات برای اظهار نظر کافی نیست.
2. تایباد نمی‌شود.
3. تایباد نمی‌شود.

\[H_1 : \beta
eq 0 \]

اعدا شده است که نیمی از افزایش در جمعه ای موافقت قانون خاصی هستند نموده ای 100نایی افزایش جمعه به طور تصادفی انتخاب کرده ایم و ملاحظه شده که 5 کنار موافقت قانون می باشد در آزمون فرضیه برای پذیرش یا رد این ادعا امر آزمون

چقدر است؟
سال ۱۳۹۴ نمایشگاه بین‌المللی نمایشگاه‌های تخصصی و نمایشگاه‌های سالمندی

۱۴ - در دو جامعه آماری نرمال با واریانس‌های نامعلوم ولی یکسان، آماره آزمون برای مقایسه میانگین‌ها دارای چه توزیعی است؟

\[
\begin{align*}
 n_1 + n_2 &= 32, \\
 n_1 - 1, n_2 - 1 &= 31, \\
 n_1 + n_2 - 1 &= 63.
\end{align*}
\]

۲۵ - برای مقایسه میانگین‌های سه جامعه نرمال با واریانس مشترک \(\sigma^2 \) نمونه‌های تصادفی مستقل به اندازه

\[
\begin{align*}
 n_1 &= n_2 = n_3 = 5
\end{align*}
\]

بیان شده است؟

<table>
<thead>
<tr>
<th>معنی تغییرات</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>بین گروه‌ها</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>درون گروه‌ها</td>
<td>c</td>
<td></td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>کل</td>
<td>SS</td>
<td>14</td>
<td>MS</td>
<td>9.546</td>
</tr>
</tbody>
</table>

۳۶ - متغیر تصادفی \(X \) داده‌های توزیع نرمال است در آزمون 18 = \(\sigma^2 \). در مقدار 18 فرضیه اصلی \(H_0 \) که به طور

\[
X^2_{0.025} = 11.1. \]

تصادفی انتخاب شده برای با هو 20.2 باشد درست است؟

\[
\begin{align*}
 H_1 & : \text{رد نمی‌شود,} \\
 H_0 & : \text{رای دمو کنیم.} \\
 H_1 & : \text{رای توهیم رد کنیم.}
\end{align*}
\]

۳۷ - متغیر تصادفی \(X \) داده‌های توزیع نرمال است در آزمون 18 = \(\sigma^2 \). در مقدار 18 فرضیه اصلی \(H_0 \) که به طور

\[
X^2_{0.025} = 11.1. \]

تصادفی انتخاب شده برای با هو 20.2 باشد آماره آزمون کدام است؟

\[
\begin{align*}
 H_1 & : \text{رد نمی‌شود,} \\
 H_0 & : \text{رای دمو کنیم.} \\
 H_1 & : \text{رای توهیم رد کنیم.}
\end{align*}
\]

۳۸ - در کارخانه‌ای که دو خط تولید مستقل داریم نمونه‌هایی با مشخصات زیر به دست امده است

\[
\begin{align*}
 n_1 &= n_2 = 200, S_1^2 = 20, S_2^2 = 25, \bar{X}_1 = 198, \bar{X}_2 = 200
\end{align*}
\]

برای آزمون برای مقایسه میانگین دو جامعه آماره چقدر است؟

\[
\begin{align*}
 H_1 & : \text{رد نمی‌شود,} \\
 H_0 & : \text{رای دمو کنیم.} \\
 H_1 & : \text{رای توهیم رد کنیم.}
\end{align*}
\]
برای از آزمون برای برنامه‌های میانگین نمرات درسی کلاس نمونه ای 9 تا 15 از هر کلاس اطلاعات زیر به دست آمده است:

\[S^2_p = 4, S^2_2 = 6, S^2_3 = 5, \bar{X}_1 = 15, \bar{X}_2 = 16, \bar{X}_3 = 14 \]

\[d = \mu \quad d = |\bar{X} - \mu| \]

\[L = \bar{X} - z \frac{\sigma}{\sqrt{n}} \quad U = \bar{X} + Z \frac{\sigma}{\sqrt{n}} \]

\[L = \bar{X} - t \frac{s}{\sqrt{n}} \quad U = \bar{X} + t \frac{s}{\sqrt{n}} \]

\[\sigma^p = \frac{P(1-P)}{n} \quad \bar{P}(1-\bar{P}) \quad d = |\bar{P} - p| \]

\[(L, U) = \bar{P} \pm Z \frac{\sqrt{\bar{P}(1-\bar{P})}}{\sqrt{n}} \quad \bar{X} + 4 \]

\[L = \frac{(n-1)S^p}{x^n} \quad U = \frac{(n-1)S^p}{x^{-n-1}} \]

\[Z = \frac{\bar{X} - \mu}{\sigma} \quad \frac{s}{\sqrt{n}} \quad \frac{\bar{X} - \mu}{\sigma} \quad T = \frac{\bar{X} - \mu}{s} \]

\[Z = \frac{\bar{X} - \bar{X}_1}{\sigma(\bar{X}_1 - \bar{X}_p)} \quad \frac{\sigma^p}{\sqrt{n_1}} + \frac{\sigma^p}{\sqrt{n_2}} \]
سال ۱۳۹۴ - گروه: ۲ - مبحث: تحلیل و تفسیر

مرکز آماری دانشگاه علوم پزشکی تهران

زمان آزمون (دقیقه): ۱۲۰ - شریعتی: ۱۲۰ - نشانه: ۱۰ - نشانه: ۴

References:

- منابع: ۱۳۸۷ - موفقیت‌آمیزی در تحلیل و تفسیر
- مرکز آماری دانشگاه علوم پزشکی تهران

شماره هشت ۲۰ - میهمان: ۲۰۰ - مدیریت دانشگاه (جنبه‌هایی) - مدیریت دانشگاه (جنبه‌هایی)

پایگاه دیجیتال: www.PnuNews.com

\[S_p^\nu = \frac{(n_1 - 1)S_{1 \nu} + (n_\nu - 1)S_{\nu \nu}}{n_1 + n_\nu - \nu} \]

\[T = \frac{\bar{X}_\nu - \bar{X}_1}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_\nu}}} \]

\[Z = \frac{\bar{P} - P_o}{\sigma \bar{p}} \]

\[\sigma \bar{p} = \sqrt{\frac{P_o(1 - P_o)}{n}} \]

\[x^\nu = \frac{(n_1 - 1)S_{1 \nu}}{\sigma_{1 \nu}} \]

\[SSR = \sum_{i=1}^{k} \frac{T_i^\nu}{n_1 + n_\nu - \nu} - \frac{T^\nu}{n} \]

\[SST = \sum_{i=1}^{k} \sum_{i=1}^{n} x_{iy}^\nu - \frac{T^\nu}{N} \]

\[SSE = SST - SSR \]

\[MSR = \frac{MSS}{k - 1} \]

\[MSE = \frac{SSE}{N - K} \]

\[F = \frac{MSR}{MSE} \]

\[\hat{y} = \hat{\alpha} + \hat{\beta} x \]

\[\hat{\beta} = \frac{S_{xy}}{S_{xx}} \]

\[\hat{\alpha} = \bar{y} - \hat{\beta} \bar{x} \]

\[r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{\left[n \sum x_i^\nu - (\sum x_i)^\nu\right] \left[n \sum y_i^\nu - (\sum y_i)^\nu\right]}} \]

\[SSE = S_{yy} - (S_{xy})^\nu = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \]

\[S_{YY} = \sum_{i=1}^{n} y_i^\nu - n\bar{y}^\nu \]

\[S_{XX} = \sum_{i=1}^{n} x_i^\nu - n\bar{x}^\nu \]

\[\rho = \frac{S_{xy}^\nu}{S_{xx}S_{yy}} \]

\[S_{XY} = \sum_{i=1}^{n} x_i y_i - n\bar{x} \bar{y} \]
پانزدهم - توزیع نرمال استاندارد

\[P(Z \leq z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt \]

\[\Phi(- z) = 1 - \Phi(z) \]

<table>
<thead>
<tr>
<th>(z)</th>
<th>(0.00)</th>
<th>(0.01)</th>
<th>(0.02)</th>
<th>(0.03)</th>
<th>(0.04)</th>
<th>(0.05)</th>
<th>(0.06)</th>
<th>(0.07)</th>
<th>(0.08)</th>
<th>(0.09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.5000</td>
<td>0.5040</td>
<td>0.5080</td>
<td>0.5120</td>
<td>0.5160</td>
<td>0.5199</td>
<td>0.5239</td>
<td>0.5279</td>
<td>0.5319</td>
<td>0.5359</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5398</td>
<td>0.5438</td>
<td>0.5478</td>
<td>0.5517</td>
<td>0.5557</td>
<td>0.5596</td>
<td>0.5635</td>
<td>0.5675</td>
<td>0.5714</td>
<td>0.5753</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5793</td>
<td>0.5832</td>
<td>0.5871</td>
<td>0.5910</td>
<td>0.5948</td>
<td>0.5987</td>
<td>0.6026</td>
<td>0.6064</td>
<td>0.6103</td>
<td>0.6141</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6176</td>
<td>0.6217</td>
<td>0.6255</td>
<td>0.6293</td>
<td>0.6331</td>
<td>0.6368</td>
<td>0.6406</td>
<td>0.6443</td>
<td>0.6480</td>
<td>0.6517</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6554</td>
<td>0.6591</td>
<td>0.6628</td>
<td>0.6664</td>
<td>0.6700</td>
<td>0.6736</td>
<td>0.6772</td>
<td>0.6808</td>
<td>0.6844</td>
<td>0.6879</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6915</td>
<td>0.6950</td>
<td>0.6985</td>
<td>0.7020</td>
<td>0.7054</td>
<td>0.7088</td>
<td>0.7123</td>
<td>0.7157</td>
<td>0.7190</td>
<td>0.7224</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7257</td>
<td>0.7291</td>
<td>0.7324</td>
<td>0.7357</td>
<td>0.7389</td>
<td>0.7422</td>
<td>0.7454</td>
<td>0.7486</td>
<td>0.7517</td>
<td>0.7549</td>
</tr>
<tr>
<td>0.7</td>
<td>0.7580</td>
<td>0.7611</td>
<td>0.7642</td>
<td>0.7673</td>
<td>0.7703</td>
<td>0.7734</td>
<td>0.7764</td>
<td>0.7794</td>
<td>0.7823</td>
<td>0.7852</td>
</tr>
<tr>
<td>0.8</td>
<td>0.7881</td>
<td>0.7910</td>
<td>0.7939</td>
<td>0.7967</td>
<td>0.7995</td>
<td>0.8023</td>
<td>0.8051</td>
<td>0.8078</td>
<td>0.8106</td>
<td>0.8133</td>
</tr>
<tr>
<td>0.9</td>
<td>0.8159</td>
<td>0.8185</td>
<td>0.8212</td>
<td>0.8238</td>
<td>0.8264</td>
<td>0.8289</td>
<td>0.8315</td>
<td>0.8340</td>
<td>0.8365</td>
<td>0.8389</td>
</tr>
<tr>
<td>1.0</td>
<td>0.8413</td>
<td>0.8438</td>
<td>0.8461</td>
<td>0.8485</td>
<td>0.8508</td>
<td>0.8531</td>
<td>0.8554</td>
<td>0.8577</td>
<td>0.8599</td>
<td>0.8621</td>
</tr>
<tr>
<td>1.1</td>
<td>0.8643</td>
<td>0.8665</td>
<td>0.8686</td>
<td>0.8708</td>
<td>0.8729</td>
<td>0.8749</td>
<td>0.8770</td>
<td>0.8790</td>
<td>0.8810</td>
<td>0.8830</td>
</tr>
<tr>
<td>1.2</td>
<td>0.8849</td>
<td>0.8869</td>
<td>0.8888</td>
<td>0.8907</td>
<td>0.8925</td>
<td>0.8944</td>
<td>0.8962</td>
<td>0.8980</td>
<td>0.8997</td>
<td>0.9013</td>
</tr>
<tr>
<td>1.3</td>
<td>0.9032</td>
<td>0.9049</td>
<td>0.9066</td>
<td>0.9082</td>
<td>0.9099</td>
<td>0.9115</td>
<td>0.9131</td>
<td>0.9147</td>
<td>0.9162</td>
<td>0.9177</td>
</tr>
<tr>
<td>1.4</td>
<td>0.9192</td>
<td>0.9207</td>
<td>0.9222</td>
<td>0.9236</td>
<td>0.9251</td>
<td>0.9265</td>
<td>0.9279</td>
<td>0.9292</td>
<td>0.9306</td>
<td>0.9319</td>
</tr>
<tr>
<td>1.5</td>
<td>0.9332</td>
<td>0.9345</td>
<td>0.9357</td>
<td>0.9370</td>
<td>0.9382</td>
<td>0.9394</td>
<td>0.9406</td>
<td>0.9418</td>
<td>0.9429</td>
<td>0.9441</td>
</tr>
<tr>
<td>1.6</td>
<td>0.9454</td>
<td>0.9463</td>
<td>0.9474</td>
<td>0.9484</td>
<td>0.9495</td>
<td>0.9505</td>
<td>0.9515</td>
<td>0.9525</td>
<td>0.9535</td>
<td>0.9545</td>
</tr>
<tr>
<td>1.7</td>
<td>0.9554</td>
<td>0.9564</td>
<td>0.9573</td>
<td>0.9583</td>
<td>0.9591</td>
<td>0.9599</td>
<td>0.9608</td>
<td>0.9616</td>
<td>0.9625</td>
<td>0.9633</td>
</tr>
<tr>
<td>1.8</td>
<td>0.9641</td>
<td>0.9649</td>
<td>0.9656</td>
<td>0.9664</td>
<td>0.9671</td>
<td>0.9678</td>
<td>0.9686</td>
<td>0.9693</td>
<td>0.9699</td>
<td>0.9706</td>
</tr>
<tr>
<td>1.9</td>
<td>0.9713</td>
<td>0.9719</td>
<td>0.9726</td>
<td>0.9732</td>
<td>0.9738</td>
<td>0.9744</td>
<td>0.9750</td>
<td>0.9756</td>
<td>0.9761</td>
<td>0.9776</td>
</tr>
<tr>
<td>2.0</td>
<td>0.9772</td>
<td>0.9778</td>
<td>0.9783</td>
<td>0.9788</td>
<td>0.9793</td>
<td>0.9798</td>
<td>0.9803</td>
<td>0.9808</td>
<td>0.9812</td>
<td>0.9817</td>
</tr>
<tr>
<td>2.1</td>
<td>0.9821</td>
<td>0.9826</td>
<td>0.9830</td>
<td>0.9834</td>
<td>0.9838</td>
<td>0.9842</td>
<td>0.9846</td>
<td>0.9850</td>
<td>0.9854</td>
<td>0.9857</td>
</tr>
<tr>
<td>2.2</td>
<td>0.9861</td>
<td>0.9864</td>
<td>0.9868</td>
<td>0.9871</td>
<td>0.9875</td>
<td>0.9878</td>
<td>0.9881</td>
<td>0.9884</td>
<td>0.9887</td>
<td>0.9890</td>
</tr>
<tr>
<td>2.3</td>
<td>0.9893</td>
<td>0.9896</td>
<td>0.9898</td>
<td>0.9901</td>
<td>0.9904</td>
<td>0.9906</td>
<td>0.9909</td>
<td>0.9911</td>
<td>0.9913</td>
<td>0.9916</td>
</tr>
<tr>
<td>2.4</td>
<td>0.9918</td>
<td>0.9920</td>
<td>0.9922</td>
<td>0.9925</td>
<td>0.9927</td>
<td>0.9929</td>
<td>0.9931</td>
<td>0.9933</td>
<td>0.9934</td>
<td>0.9936</td>
</tr>
<tr>
<td>2.5</td>
<td>0.9938</td>
<td>0.9940</td>
<td>0.9943</td>
<td>0.9945</td>
<td>0.9948</td>
<td>0.9949</td>
<td>0.9951</td>
<td>0.9952</td>
<td>0.9954</td>
<td>0.9955</td>
</tr>
<tr>
<td>2.6</td>
<td>0.9953</td>
<td>0.9955</td>
<td>0.9956</td>
<td>0.9957</td>
<td>0.9959</td>
<td>0.9960</td>
<td>0.9961</td>
<td>0.9962</td>
<td>0.9963</td>
<td>0.9964</td>
</tr>
<tr>
<td>2.7</td>
<td>0.9965</td>
<td>0.9966</td>
<td>0.9967</td>
<td>0.9969</td>
<td>0.9969</td>
<td>0.9970</td>
<td>0.9971</td>
<td>0.9972</td>
<td>0.9973</td>
<td>0.9974</td>
</tr>
<tr>
<td>2.8</td>
<td>0.9974</td>
<td>0.9975</td>
<td>0.9976</td>
<td>0.9977</td>
<td>0.9977</td>
<td>0.9978</td>
<td>0.9979</td>
<td>0.9979</td>
<td>0.9980</td>
<td>0.9981</td>
</tr>
<tr>
<td>2.9</td>
<td>0.9981</td>
<td>0.9982</td>
<td>0.9982</td>
<td>0.9983</td>
<td>0.9984</td>
<td>0.9984</td>
<td>0.9985</td>
<td>0.9985</td>
<td>0.9986</td>
<td>0.9986</td>
</tr>
<tr>
<td>3.0</td>
<td>0.9987</td>
<td>0.9987</td>
<td>0.9987</td>
<td>0.9988</td>
<td>0.9988</td>
<td>0.9989</td>
<td>0.9989</td>
<td>0.9989</td>
<td>0.9990</td>
<td>0.9990</td>
</tr>
</tbody>
</table>
عنوان فرست: آمار کاربرد آن در میزبانی 2 کاربر آمار میزبانی یادگیری از قبیل‌گرایی کاربر آمار میزبانی صنعتی
رشته تحقیقی/کد میزبانی: میزبانی دولتی، میزبانی دولتی (جدید)، 0000، میزبانی صنعتی 0000-0000 - میزبانی بارگاهی (جدید) 0000-0000.

<table>
<thead>
<tr>
<th>جدول توزیع</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3258 0.7259 1.3368 3.0187 6.3138 32.1746 32.1821 365.657 366.619</td>
</tr>
<tr>
<td>2</td>
<td>0.2766 0.5402 0.9783 1.6364 2.5534 3.9213 3.9247 4.0064 4.0064</td>
</tr>
<tr>
<td>3</td>
<td>0.2797 0.5524 0.9913 1.6531 2.5683 3.7334 3.7567 4.0064 4.0064</td>
</tr>
<tr>
<td>4</td>
<td>0.2615 0.5246 0.9834 1.6451 2.5595 3.9213 3.9247 4.0064 4.0064</td>
</tr>
<tr>
<td>5</td>
<td>0.2610 0.5469 0.8822 1.6318 2.5535 3.9213 3.9247 4.0064 4.0064</td>
</tr>
<tr>
<td>6</td>
<td>0.2862 0.5169 0.9793 1.6238 2.5378 3.9213 3.9247 4.0064 4.0064</td>
</tr>
<tr>
<td>7</td>
<td>0.2768 0.3946 0.8548 1.5960 2.4768 3.9213 3.9247 4.0064 4.0064</td>
</tr>
<tr>
<td>8</td>
<td>0.2768 0.3946 0.8548 1.5960 2.4768 3.9213 3.9247 4.0064 4.0064</td>
</tr>
<tr>
<td>9</td>
<td>0.2862 0.5169 0.9793 1.6238 2.5378 3.9213 3.9247 4.0064 4.0064</td>
</tr>
<tr>
<td>10</td>
<td>0.2768 0.3946 0.8548 1.5960 2.4768 3.9213 3.9247 4.0064 4.0064</td>
</tr>
</tbody>
</table>

www.PnuNews.com